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Abstract. All possible configurations of a system ofN identical particles are classified for
the case when the configuration spaceQ of a single particle reduces to a finite set. The
classification is achieved by means of a combinatorial analogue of the duality of Weyl. Two
groups: the Pauli group permuting identical particles, and the symmetric group onQ, act on
the N th Cartesian power ofQ. These actions mutually commute, and their orbit structure is
classified by appropriate epikernels. Moreover, each stratum of each group is invariant under
the dual action, which yields a coarsening of permutation representations, acting on appropriate
sets of orbits. It is shown that such a coarsening recovers the geometric symmetry for the case
when particles are indistinguishable.

1. Introduction

The duality of Weyl (1950) has been described as the framework for a quantum theory
of identical particles. The key ingredient of this framework is commutativity of actions
of two groups, the symmetric group

∑
N on the set ofN identical particles (referred to

hereafter as the Pauli group), and the unitary groupU(n)—the quantum symmetry group
of an n-dimensional spaceL of quantum states of a single particle. Both groups,

∑
N and

U(n), act on theN th tensor power spaceL⊗N , and the commutativity of actions of these
two groups yields a classification of vectors of an orthonormal basis in this space in terms
of irreducible representations of both groups as a compatible and complete set of quantum
numbers. This framework has been succesfully applied, by use of Wigner–Racah calculus
(Wigner 1959, Biedenharn and Louck 1981), to the theory of spectra of multielectron atoms
(Wybourne 1965, Jucys and Savukynas 1973) and nuclear shells (Vanagas 1971). Moshinsky
and Quesne (1970, 1971; cf also Quesne 1973, 1975, Aguilera-Navarro and Aguilera-
Navarro 1975) extended the duality of Weyl in terms of the notion of complementary
groups, defined within a single irreducible representation [1] of the ‘supergroup’U(2n), the
quantum symmetry group of the 2n-dimensional Fock space of fermions with the single-
particle spaceL, dim L = n, and 06 N 6 n, or the corresponding irreducible representation
[( 1

2)n] of the ‘noninvariance group’O+(2N + 1) ⊂ U(2N), generated by all creation and
anihilation operators. There are also several attempts for use of such an approach in the
theory of molecules (Floreket al 1991, Paldus 1976, Kim 1981, Newman 1981, Michel
and Mozrzymas 1982, Butleret al 1983).

A somehow distinct approach to the theory of identical particles is taken within the
concept of anyons and intermediate statistics (Leinaas 1993, Einarsson 1995). Anyons are
hypothetical particles living on two-dimensional manifoldsQ, and their indistinguishability
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is accounted for by the braid group on the manifold rather than the Pauli group
∑

N .
The classical configuration space of a system ofN anyons is constructed as the space of
regular orbits of the Pauli group

∑
N on theN th Cartesian powerQ×N of the single-particle

manifoldQ, and the non-trivial homotopy of this orbit space is the source of an intermediate
statistics.

In this paper we propose a version of the duality of Weyl for the case when the
configuration spaceQ is a finite set. Our version is based on actions of finite groups on
finite sets and is purely combinatorial, in particular it does not appeal to any linear or unitary
structure. We aim to point out that this scheme also provides some interesting clasification of
symmetry types of points ofN -particle configuration spaces and, in particular, it reproduces
the geometric symmetry of some manifolds ofN -particle states, as a result of coarsening
of the group actions to appropriate orbit spaces.

The combinatorial version of the Weyl duality presented here is also well adapted to the
theory of identical particles on lattices for both approaches: the Wigner–Racah approach to
multielectron multicentre systems, and to anyons.

2. The combinatorial version of the duality of Weyl

Let Q be a finite set of|Q| = n elements, equipped with the interpretation of the
configuration space of a single particle. LetH ⊂ ∑

n be a subgroup of the symmetric
group

∑
n on the setQ, e.g.H might be the geometric symmetry group ofQ. We consider

the system ofN identical itinerant particles with positionsq ∈ Q, allowed to hop between
some different pointsq and q ′ in Q. The natural candidate for the set of allN -particle
positions is theN th Cartesian power set

Q×N = {(q1, . . . , qN)|qj ∈ Q, j ∈ Ñ} (1)

where

Ñ = {j = 1, 2, . . . , N} (2)

is the set of labels of particles. LetG ⊂ ∑
N be subgroup of the Pauli group

∑
N—the

symmetric group on the set̃N .
We now introduce two actions,A : G × Q×N → Q×N , andF : H × Q×N → Q×N , of

the groupG andH respectively, on the setQ×N , specified by

A(g) =
(

f

f ◦ g−1

)
g ∈ G f ∈ Q×N (3)

and

F(h) =
(

f

h ◦ f

)
h ∈ H f ∈ Q×N (4)

where group elementsg ∈ G ⊂ ∑
N and h ∈ H ⊂ ∑

N are considered as mappings
g : Ñ → Ñ and h : Q → Q, respectively,f ∈ Q×N is the mappingf : Ñ → Q

defined byf (j) = qj , j ∈ Ñ , and f ◦ g−1, h ◦ f are compositions of mappings. The
upper symbol in the parentheses in the right-hand side of equations (3) and (4) denotes an
object of the permutation from the corresponding left-hand side, whereas the lower symbol
is its image. In other words, we consider actionsA and F , of two different groups,G
and H , respectively, on the setQ×N of all functions onÑ , valued in the single-particle
configuration spaceQ. These two actions commute, i.e.

A(g)F (h) = F(h)A(g) =
(

f

h ◦ f ◦ g−1

)
h ∈ H g ∈ G f ∈ Q×N. (5)
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We recall here that the original scheme of Weyl duality corresponds to replacing the finite
setQ by a finite-dimensional unitary spaceL of quantum states of a single particle, with
n = dim L, and to puttingG = ∑

N and H = U(n), with simultaneous substitution
of Q×N by L⊗N . Then the commutativity (5) yields a complete classification of basis
states in theN th tensor power spaceL⊗N by irreducible representations of

∑
N andU(n)

(Young diagrams), and appropriate degeneracy labels (Young and Weyl standard tableaux
(Kerber 1991)). An important observation is that the linear space of all subspaces inL⊗N ,
transforming in accordance with a single irreducible representation of one of the groups,∑

N or U(n), is invariant under the action of the other group. We point out in the next
section the combinatorial analogue of this observation.

3. Stratification of a set under two commutative actions

In this section we analyse the structure, imposed on the setQ×N by actionsA andF , and
resulting from the commutativity (5) of these actions.

We recall to begin with some definitions and facts, related to ‘actions of groups
on sets’ (Kerber 1991, Michel 1980). LetP : K × � → � denote the action of a
group K on the set�. An orbit generated byP from an elementω ∈ � is the set
OK [ω] = {P(k)ω|k ∈ K} ⊂ �. The stabilizer of an elementω ∈ � is a subgroup
Kω = {k ∈ K|P(k)ω = ω} ⊂ G.

The restrictionP |OK [ω] of the actionP of the groupK to an orbitOK [ω] is called a
transitive representation, and denotedRK:Kω

. Each stabilizerKω, ω ∈ �, is an element
of the latticeL̃(K) of all subgroups ofK. By a lattice we mean here a partially ordered
set with the unique maximal and minimal element; the partial order inL̃(K) is defined by
inclusion Kω ⊂ K, and the unique elements are{e} and K as the minimal and maximal,
respectively. Whenω runs over an orbitO[ωo], then the stabilizerKω runs over the set

κ = [Kωo ] = {kKωok−1|k ∈ K} ⊂ L̃(K) (6)

of all those subgroups ofK, which are conjugated toKωo in K. The setκ is referred to as
the epikernelof the orbitO[ωo]. Each epikernelκ is an element of the latticẽl(K) of all
classes of conjugated subgroups; the partial order inl̃(K) is inherited fromL̃(K). The set
of all orbits with the epikernelκ is called thestratumof the actionP , corresponding toκ,
The stratification of the set� under the actionP of the groupK is written in the form

�/K =
⋃

κ∈ekP

S(P, κ) (7)

where�/K denotes the set of all orbits ofK on �, andekP ⊂ l̃(K) is the subset of all
those epikernels ofK which correspond to non-empty strata(S(P, κ) 6= ∅}. We denote by

S̄(P , κ)
⋃

δ∈S(P,κ)

δ ⊂ � (8)

the union of all orbits in the stratumS(P, κ), so that

� =
⋃

κ∈ekP

S̄(P, κ) (9)

is the decomposition of the set� into non-empty and pairwise disjoint subsets corresponding
to different epikernels.
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We formulate the combinatorial analogue of the duality of Weyl in terms of notions
defined above by putting� = Q×N and taking byP either of the mutually dual actionsA
or F . Commutativity of these actions implies that each union

S̄(A, γ ) =
⋃

α∈S(A,γ )

α ⊂ Q×N (10)

of all orbits of G on Q×N with the epikernelγ ∈ ekA is an invariant subset of the action
F . Dually, each union

S̄(F, η) =
⋃

β∈S(F,η)

β ⊂ Q×N (11)

of all orbits of H on Q×N with the epikernelη ∈ ek F is an invariant subset of the action
A.

We have therefore

S̄(A, γ )/H =
⋃

η∈ek F

T (Aγ, η) γ ∈ ekA (12)

and

S̄(F, η)/G =
⋃

γ∈ekA

T (Fη, γ ) η ∈ ek F (13)

whereT (Aγ, η) is the stratum of the restrictionF |γ of the actionF to the invariant subset
S̄(A, γ ) ⊂ Q×N , and dually,T (Fη, γ ) is the stratum of the restrictionA|η of the action
A to the invariant subset̄S(F, η) ⊂ Q×N . Clearly, the corresponding unions of orbits
coincide, i.e.

T̄ (A, γ, η) =
⋃

β∈T (A,γ,η)

β =
⋃

α∈T (Fη,γ )

α = T̄ (Fη, γ ). (14)

We thus put

T̄ (γ, η) = T̄ (Aγ, η) = T̄ (Fη, γ ) ⊂ Q×N (15)

and refer toT̄ (γ, η) as to theregion in Q×N , corresponding to the pair(γ, η) of epikernels
of dual actions.

Stratification of theN th Cartesian powerQ×N under the two dual actionsA and F

results therefore in the decomposition

Q×N =
⋃

γ∈ek A

η∈ek F

T̄ (γ, η) (16)

into pairwise disjoint regions, characterized by epikernels of both actions.

4. Coarsened actions

ActionsA andF on the setQ×N generate in a natural way new actions,A′ : G×Q×N/H →
Q×N/H andF ′ : H ×Q×N/G → Q×N/G, respectively, on the corresponding set of orbits
of the dual group. Thus we have

A′(g) =
(

β[f ]
β[A(g)f ]

)
f ∈ β ⊂ Q×N g ∈ G (β ∈ Q×N/H) (17)

and

F ′(h) =
(

α[f ]
α[F(h)f ]

)
f ∈ α ⊂ Q×N h ∈ H (α ∈ Q×N/G). (18)
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One can easily prove that formulae (17) and (18) do not depend on the choice of an orbit
representativef ∈ α, or f ∈ β, and that they define the actionsA′ of G, andF ′ of H ,
on the set of orbits of the dual action. We refer hereafter toA′ andF ′ as to thecoarsened
actions.

Clearly, each setT (Aγ, η) ⊂ Q×N/H is invariant under the coarsened actionA′, and
dually, each setT (Fη, γ ) ⊂ Q×N/G is invariant underF ′. Thus the whole structure of
the coarsened actionsA′ and F ′ can be determined at the level of each regionT̄ (γ, η)

separately. The elementary building brick is ablock b ⊂ T̄ (γ, η), defined as an orbit
of the direct product groupG × H . Thus the blockb[f ], generated from an element
f ∈ T̄ (γ, η) ⊂ Q×N , is defined by

b[f ] = {A(g)F (h)f | g ∈ G h ∈ H } ⊂ T̄ (γ, η). (19)

In addition to the pair(γ, η) which characterizes the region̄T (γ, η), each blockb is
characterized by another pair(γ ′, η′) of epikernelsγ ′ ∈ l̃(G), η′ ∈ l̃(H). They are defined
as follows. Letf ∈ b ⊂ T̄ (γ, η) and let

GH,f = {g ∈ G | A(g)f ∈ OH [f ]} (20)

HG,f = {h ∈ H | F(h)f ∈ OG[f ]} (21)

be subgroups ofG andH , respectively, consisting of all those elements which carryf into
an element belonging to the same orbit of the dual group asf . Then the new epikernels
defined by

γ ′ = [GH,f ] η′ = [HG,f ] (22)

do not depend upon the choice off within the blockb. The subgroups (20) and (21) also
determine chains

Gf ⊆ GH,f ⊆ G (23)

and

Hf ⊆ HG,f ⊆ H (24)

with the property

|GH,f |

|Gf | = |HG,f |
|Hf | = c(γ γ ′, ηη′). (25)

The positive integerc(γ γ ′, ηη′) characterizes the blockb and will be referred to hereafter
as the degree of coarsening on the blockb. The integers

mH(γ γ ′, ηη′) = |G|
|GH,f | (26)

and

mG(γ γ ′, ηη′) = |H |
|HG,f | (27)

are multiplicities of the transitive representationRH :Hf

andRG:Gf

respectively on the block
b. The total number of elements of the blockb is

|b| = |G| · |H |
|HG,f | · |GH,f | · c(γ γ ′, ηη′) = |G| · |H |

|Gf | · |Hf | · c(γ γ ′, ηη′)
. (28)

We can thus write down restrictions of both actions,A andF , to the blockb, as

A|b ∼= |H |
|HG,f |R

G:Gf

Gf ∈ γ HG,f ∈ η′ (29)
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and

F |b ∼= |G|
|GH,f |R

H :Hf

Hf ∈ η GH,f ∈ γ ′. (30)

The structure (29)–(30) of actionsA andF on the blockb readily implies

A′ |b/H
∼= RG:GH,f

GH,f ∈ γ ′ ∈ l̃(G) (31)

and

F ′ |b/G
∼= RH :HG,f

HG,f ∈ η′ ∈ l̃(H). (32)

Thus coarsened actions are transitive on each blockb, and their stabilizers(Gh,f orHG,f )

increase in comparison to stabilizers of initial actions (resp.Gf or Hf ), in accordance with
the degreec(γ γ ′, ηη′) of coarsening.

The above construction suggests that we divide each regionT̄ (γ, η) into subregions
D̄(γ γ ′, ηη′), each subregion consisting, by definition, of all blocks characterized by the
tetraiad(γ γ ′, ηη′) of epikernels. Then the structure imposed on the setQ×N by actionsA
andF can be summarized in the decomposition

Q×N = ∪γ,γ ′∈l̃(G) ∪η,η′∈l̃(H) D̄(γ γ ′, ηη′). (33)

Restriction of summation in (33) toγ ′, η′ yields regions T̄ (γ, η), whereas the sum
over γ, γ ′η′(η, γ ′, η′) yields the union S̄(F, η)(or S̄(A, γ )) of orbits in the stratum
S(F, η) (or S(A, γ )).

Let µ(γ γ ′, ηη′) be the number of blocks in the subregion̄D(γ γ ′, ηη′). Then the
decomposition of initial actions into transitive representations reads

A ∼=
∑

γ,γ ′∈l̃(G)

∑
η,η′∈l̃(u)

µ(γ γ ′, ηη′)
|H |

|HG,f |R
G:Gf

(34)

and

F ∼=
∑

γ,γ ′∈l̃(G)

∑
η,η′∈l̃(H)

µ(γ γ ′, ηη′)
|G|

|GH,f |R
H :Hf

(35)

in accordance with the decomposition (33), whereas the coarsened actions have the form

A′ ∼=
∑

γ,γ ′∈l̃(G)

∑
η,η′∈l̃(H)

µ(γ γ ′, ηη′)RG:GH,f

(36)

and

F ′ ∼=
∑

γ γ ′∈l̃(G)

∑
η,η′∈l̃(H)

µ(γ γ ′, ηη′)RH :HG,f

(37)

in accordance with the decomposition

Q×N/H = ∪η∈ekF S(F, η) = ∪η∈ekF,γ∈ekAT (aγ, η) (38)

and

Q×N/G = ∪γ∈ekAS(A, γ ) = ∪γ∈ekA,η∈ekF T (Fη, γ ) (39)

respectively, into strataS and regionsT in appropriate orbit sets. It is assumed in
equations (34)–(37) thatGf ∈ γ, Hf ∈ η, GH,f ∈ γ ′, HG,f ∈ η′.

Moreover,

T (Fη, γ ) = ∪γ ′,η′D̄(γ γ ′, ηη′)/G (40)

and

T (Aγ, η) = ∪γ ′,η′D̄(γ γ ′, ηη′)/H. (41)
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5. An example

We consider as an example the setQ×N with Q being the set of vertices of a square (or,
for example, as the star of a two-dimensional wavevectork with the C4v symmetry), and
N = 4. We putQ = {q = 1, 2, 3, 4}, and thus

Q×4 = {(q1, q2, q3, q4)|qj ∈ Q, j ∈ Ñ}, |Q×4| = 44 = 256. (42)

We assume thatG is the Pauli group
∑

4, and H = C4v, the geometric point symmetry
group of the square. The action ofC4v on Q is determined by permutations

C4 =
(

1234
2341

)
σ1 =

(
1234
32 14

)
(43)

in accordance with figure 1. This action constitutes the transitive representationRC4v :S3
2 ,

whereS3
2 is the stabilizer of the vertexq = 1.

Figure 1. Labelling of vertices of the square and of vertical planes of the groupC4v .

The actionA, as defined by equation (3), decomposes into transitive representations of
the Pauli group

∑
4 as

A ∼= 4R[4] + 12R[31] + 6R[22] + 12R[212] + R[14] (44)

where we use the abbreviationRµ = R64:6µ

and6µ = 6µ1×6µ2×6µ3×6µ4 ⊂ 64 is the
representative Young subgroup, defined by the partitionµ of N = 4 (µ1 + µ2 + µ3 + µ4 =
4, µ1 > µ2 > µ3 > µ4 > 0, zeros omitted). Each term in equation (44) corresponds to a
stratumS(A, µ) of

∑
4 on Q×4, with epikernels labelled by partitionsµ. The partitionµ

is simply the occupation of single-particle states within anN -particle orbit. The number of
elements in the orbit is

|Oµ∑
4
| = N !∏

q∈Q

µq !
(45)
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and the number of orbits in the stratum [µ] (integers in the r.h.s. of (44)) is

|S(A, µ)| = n!

ν0!
∏
l∈Ñ

νl !
(46)

whereνl is the number of parts ofµ of the lengthl ∈ Ñ , and

ν0 = n −
∑
l∈Ñ

νl (47)

is the number of unoccupied single-particle states. Thus the dimensional check of
equation (44) reads

4 · 1 + 12 · 4 + 6 · 6 + 12 · 12+ 1 · 24 = 44. (48)

Dually, F is the geometric action of the groupH = C4v in the fourth Cartesian power of
Q, so that

F =
(
RC4v :C3

2

)4 ∼= 8RS2 + 28RC1 (49)

where we again use an abbreviated notationRC4v :S3
2 = RS2, RC4v :C1 = RC1. Thus the action

F exhibits two strata, with the epikernelsS2 andC1. The dimensional check of equation (49)
reads (

8

2

)4

= 8 · 8

2
+ 28 · 8

1
(50)

where the first factor in each term in the right-hand side is the number of orbits in the
stratum, and the second is the number of elements in the orbit (the latter is presented as the
fraction |H |/|Hf | of the order of the groupH to the order of appropriate stabilizerHf ).

Stratifications (44) and (49) yield only a global inventory of symmetric patterns in the set
Q×4. More detailed information is provided by considering each union of all orbits within
a stratum as a set invariant under the dual action, and by separating all regionsT̄ (γ, η) and
blocksb. This information is collected in table 1. It follows that there are seven regions, six
of them consist of a single block, and one,T̄ ([212], C1), encloses two blocks with distinct
structures. Coarsening of actionsA andF on various blocks, characterized by the degree
c(γ γ ′, ηη′), is inhomogeneous, and takes on the values 1 (four blocks), 2 (three blocks)
and 8 (one block).

The set

ekA = {[4], [31], [22], [212], [14]} (51)

of epikernels of the action of the Pauli group
∑

4 consists of all dominant partitions of the
integerN = 4. Each epikernelγ ∈ ekA corresponds to a definite distribution of particles
over points of the single-particle configuration spaceQ.

The set

ekF = {S2, C1} (52)

just results from all possible intersections of the single-particle stabilizers(S1
2 or S3

2, of
figure 2) in a given four-particle configuration. Clearly, whenN is increasing, then most of
the orbits in the stratification corresponding to equation (5) belong to the trivial epikernel
C1, whereas the symmetric epikernelS2 becomes more and more exceptional. Anyway,
any increase of symmetry, i.e. any epikernel from the upper region of figure 3, is strictly
forbidden.
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Table 1. Block structure of the setQ×4, imposed by the combinatoric version of the duality of
Weyl, with G = ∑

4, H = C4v . SymbolD2d ∈ l̃(
∑

4) in the columnγ ′ denotes the conjugacy
class of subgroups of

∑
4, which are isomorphic with the point groupD2d under the isomorphism∑

4 ∼ Td .

Region Block

γ η γ ′ η′ |b| c(γ γ ′, ηη′)

[4] S2 [4] S2 4 1
[31] S2 [31] S2 16 1

C1 [31] C1 32 1
[22] S2 D2d C2v 12 2

C1 D2d S′
2 24 2

[212] C1 [212] C1 96 1
C1 [22] S2 48 2

[14] C1 D2d C4v 24 8

256 = 44

Figure 2. The latticeL̃(C4v) of subgroups of the point groupC4v . Here Si
2 = {E, σi} (cf

figure 1). Lines indicate the partial order, which increases from the bottom (the unique minimal
elementC1) to the top (the groupC4v itself).

An epikernel of F is insensitive to symmetric distribution of particles over the
configuration spaceQ, since in this framework the particles are labelled by the elements
of the setÑ (equation (2)), and are thus distinguishable. The situation changes for the
coarsened actionF ′. Now the groupH of geometric symmetry ofQ acts on orbits of the
Pauli group, and thus on sets of unlabelled, i.e. indistinguishable particles, distributed over
Q. Just the symmetry of this distribution is reflected in epikernelsη′ ∈ ekF ′. We observe
here an increase of symmetry, e.g. the regionT̄ ([22], S2) exhibits the symmetryC2v, the
non-symmetric region̄T ([22], C1) achieves the symmetryS2, which does not exist inekF ,
and the regionT̄ [[14], C1] achieves the full geometric symmetry of the groupC4v. The
latter result can be easily understood when we observe that the stratum [14] of the Pauli
group

∑
4 corresponds to the occupation of each point ofQ by a single particle, so that
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Figure 3. The latticel̃(C4v) of classes of conjugated subgroups.

all points are equally occupied. Clearly, it corresponds to a full geometric symmetry of the
system ofN = 4 particles.

The coarsened actionF ′ in this case reads

F ′ ∼= 2RC1 + 3RS2 + RS ′
2 + RC2v + RC4v (53)

with the dimensional check

2 · 8 + 3 · 4 + 4 + 2 + 1 = 35 =
(

N + n − 1
N

)
(54)

where the Newton symbol denotes the total number of orbits of the Pauli group
∑

N on
Q×N , with N = n = 4. Similarly, for the actionA′ we have

A′ = R[4] + 2R[31] + R[212] + R[22] + 3R
∑

4:D2d (55)

with the demensional check

1 + 2 · 4 + 12+ 6 + 3 · 3 = 36. (56)

The symbolD2d in equation (55) denotes a subgroup in
∑

4, isomorphic with the point
groupD2d under the isomorphism

∑
4 ∼ Td . It is worth observing that it is not any Young

subgroup of
∑

4, so the coarsening of this action also yields an extra epikernel.

6. Final remarks and conclusions

We have proposed a finite analogy of the Weyl’s duality between the symmetric and unitary
groups acting on theN th tensor power of ann-dimensional single-particle space. In our
proposal, the single-particle spaceL of quantum states has been replaced by a finite setQ,
equipped with the interpretation of a configuration space of a single particle on a lattice.
The unitary groupU(n) is replaced by a subgroupH ⊂ ∑

n, n = |Q|, e.g. the geometric
symmetry group ofQ, and theN th tensor power spaceL⊗N by theN th Cartesian power
Q×N . The two mutually commuting actions,A : G × Q×N → Q×N, G ⊆ ∑

N , and
F : H × Q×N → Q×N, H ⊆ 6n, impose on the setQ×N the structure of strata, regions
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and blocks, in a far-reaching analogy with the original formulation of the duality of Weyl.
In particular, we obtain a complete classification of allN -particle configurations.

Apparently, the structure of actionsA and F is rather trivial: G acts on the setQ×N

from the right, andH from the left (cf equations (3) and (4)). As the result, the setQ×N

decomposes into blooksb, i.e. orbits of the direct productH ×G, each block characterized
by a pair of epikernels(γ, η), γ ∈ ek A, η ∈ ek F . However, restrictionsA|b and F |b of
these actions to a blockb are not completely complementary, i.e. the blockb cannot, in
general, be arranged into a rectangular matrix such that each row and column constitutes an
orbit of G andH , respectively. We have described this situation, in a spirit of the duality of
Weyl, by introducing new, coarsened actions of both groups on the set of orbits of the dual
group, i.e.A′ : G×Q×N/H andF ′ : H ×Q×N/G. These actions demonstrate transparently
that the structure of a blockb ⊂ Q×N is determined not only by stabilizersGf and Hf

(or, more precisely, by the pair(γ, η) of epikernels), but also by the nature of mappings
belonging to this block. The latter feature is implemented in the degreec(γ γ ′, ηη′) of
coarsening of the blockb, given by equation (25). Richness of orbit structures on the set
Q×N arises from the observation that blocks with the same pair(γ, η) of epikernels can
still exhibit different degrees of coarsening, and thus coarsenings of the whole setQ×N ,
related to each of the dual actions, are inhomogeneous.

The combinatorial variant of the duality of Weyl presented here is applicable for
investigation of the configuration space of a system ofN particles. In particular, it accounts
for the indistinguishability of particles and geometric symmetry of the systemat the classical
level. We like to stress here that such configuration spaces have no natural linear structure,
and thus our version of the Weyl duality has no immediate relations to state labelling
problems of quantum systems. Such problems would arise after appropriate quantization of
the system, say, within the Schrödinger picture, applied to an appropriate covering space
of the classical configuration space. These problems exceed the scope of the present paper.
The lack of any natural linear structure results here in replacement of the notion of an
irreducible representation and an irreducible carrier space by a transitive representation and
an orbit.

We argue that our approach is a version of the duality of Weyl, even if it is not placed
in the realm of linear spaces. The feature which is shared with the original formulation of
Weyl (1950), as well as with extensions of Moshinsky and Quesne (1970, 1971), consists
in the observation that the repetition labels of the action of, say, the groupG (i.e. labels of
different carrier spaces of the same irreducible representation0 of G in the linear case, or
labels of orbits of the groupG in our combinatorial approach) constitute a structure invariant
under the dual action of the groupH (an invariant subspace in the linear framework, or an
invariant set in our case).

We have pointed out an interesting feature of the coarsened actionF ′ in the case whenH
is the geometric symmetry group of the single-particle spaceQ. Then the actionF does not
reproduce the geometric symmetry at the level ofN particles, mainly for the reason that they
are treated as distinguishable entities. But the full recovery of geometric symmetry is done
by coarsening of the actionF , that is by the actionF ′ on the setQ×N/

∑
N of orbits of the

Pauli group. This action thus sees only sets of indistinguishable particles, distributed over
the elements ofQ, and classifies these sets according to geometric symmetry, discarding
the labels of particles. In this way we obtain in a natural manner some symmetries which
are not represented by single-particle epikernels, but follow from geometric distribution of
indistinguishable particles.
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